首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5901篇
  免费   3篇
  国内免费   17篇
安全科学   10篇
废物处理   339篇
环保管理   793篇
综合类   555篇
基础理论   2086篇
环境理论   3篇
污染及防治   723篇
评价与监测   464篇
社会与环境   946篇
灾害及防治   2篇
  2023年   19篇
  2022年   58篇
  2021年   28篇
  2020年   6篇
  2019年   13篇
  2018年   616篇
  2017年   584篇
  2016年   484篇
  2015年   64篇
  2014年   23篇
  2013年   27篇
  2012年   231篇
  2011年   795篇
  2010年   458篇
  2009年   501篇
  2008年   648篇
  2007年   903篇
  2006年   6篇
  2005年   95篇
  2004年   35篇
  2003年   108篇
  2002年   141篇
  2001年   16篇
  2000年   12篇
  1999年   5篇
  1998年   23篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1991年   2篇
  1985年   1篇
  1984年   11篇
  1983年   3篇
  1963年   1篇
排序方式: 共有5921条查询结果,搜索用时 203 毫秒
991.
In nature, density driven currents often flow over or within a bottom roughness: a sea breeze encountering tall buildings, a shallow flow encountering aquatic vegetation, or a dense oceanic current flowing over a rough bottom. Laboratory experiments investigating the mechanisms by which bottom roughness enhances or inhibits entrainment and dilution in a lock-exchange dense gravity current have been conducted. The bottom roughness has been idealized by an array of vertical, rigid cylinders. Both spacing (sparse vs. dense configuration) and height of the roughness elements compared with the height of the current have been varied. Two-dimensional density fields have been obtained. Experimental results suggest that enhancement of the entrainment/dilution of the current can occur due to two different mechanisms. For a sparse configuration, the dense current propagates between the cylinders and the entrainment is enhanced by the vortices generated in the wake of the cylindrical obstacles. For a dense configuration, the dense current rides on top of the cylinders and the dilution is enhanced by the onset of convective instability between the dense current above the cylinders and the ambient lighter water between the cylinders. For low values of the ratio of the cylinder to lock height \(\lambda \) the dense current behavior approaches that of a current over a smooth bottom, while the largest deviations from the smooth bottom case are observed for large values of \(\lambda \).  相似文献   
992.
A two-dimensional inviscid model of the gravity-current head produced by the release of a relatively small volume of dense fluid from behind a tall lock gate is constructed by Lagrangian block simulation. Three numerical experiments are conducted for the lock’s height-to-length aspect ratios H/L o  = 8, 4 and 2. The front speeds obtained by the simulations agree with the laboratory observation for a similar range of aspect ratios. The floor velocity in the wake behind these heads is found to be greater than their front speed. The high floor velocity is caused by the impingement of the coherent wake vortex on the floor. It is a condition that permits these gravity-current heads to maintain their structural integrity so that the fine sediments can travel with the head over long distances on the ocean floor. The structural coherence of the current head depends on the lock aspect ratio. The gravity-current head produced by the release from the lock with the highest aspect ratio of H/L o  = 8 is most coherent and relatively has the greatest floor velocity and the least trailing current behind the head.  相似文献   
993.
Hydraulic jumps have complex flow structures, characterised by strong turbulence and large air contents. It is difficult to numerically predict the flows. It is necessary to bolster the existing computer models to emphasise the gas phase in hydraulic jumps, and avoid the pitfall of treating the phenomenon as a single-phase water flow. This paper aims to improve predictions of hydraulic jumps as bubbly two-phase flow. We allow for airflow above the free surface and air mass entrained across it. We use the Reynolds-averaged Navier–Stokes equations to describe fluid motion, the volume of fluid method to track the interface, and the k–ε model for turbulence closure. A shear layer is shown to form between the bottom jet flow and the upper recirculation flow. The key to success in predicting the jet flow lies in formulating appropriate bottom boundary conditions. The majority of entrained air bubbles are advected downstream through the shear layer. Predictions of the recirculation region’s length and air volume fraction within the layer are validated by available measurements. The predictions show a linear growth of the shear layer. There is strong turbulence at the impingement, and the bulk of the turbulence kinetic energy is advected to the recirculation region via the shear layer. The predicted bottom-shear-stress distribution, with a peak value upstream of the toe of the jump and a decaying trend downstream, is realistic. This paper reveals a significant transient bottom shear stress associated with temporal fluctuations of mainly flow velocity in the jump. The prediction method discussed is useful for modelling hydraulic jumps and advancing the understanding of the complex flow phenomenon.  相似文献   
994.
The micro-scale prediction of sand trapping or take-off over hilly terrains is a crucial issue in semi-arid regions for soil depletion. In this context, large eddy simulations around one or several hills are performed in order to provide statistical parameters to characterize the flow at micro-scales and provide data for mesoscale modelling. We focus on the determination of recirculation zones since they play an important role in solid particle erosion or entrapment. A new wall modeling adapted from Huang et al. (J Turbul 17:1–24, 2016) for rough boundary layers is found to improve the prediction of the recirculation zone length downstream of an isolated hill and is used for all the numerical cases presented here. A geometrical parameterization of the recirculation zones is proposed. When the recirculation region is assumed to have an ellipsoidal shape, the total surface of the recirculation can be obtained from this new parameterization and easily extrapolated to more general dune configurations. Numerical results are compared with experiments performed in our laboratory (Simoëns et al. in Procedia IUTAM 17:110–118, 2015) and good agreement is achieved. We explore general aerodynamic cases deduced from the urban canopy scheme of Oke (Energy Build 11:103–113, 1988). In this scheme the momentum and mass exchange between the upper layer and the space between hills is sorted according to the streamwise hill spacing within three basic cases of skimming, wake or isolated flow. The study of the recirculation zones, the mean velocity and Reynolds stress profiles around an isolated or two consecutive hills with different distances shows that the double hill configuration with 3H separation behaves as much as a whole to the upcoming flow. The vortex formed between the crests does not strongly affect the overall evolution of the outer flow. By an a priori prediction of the preferential zones of erosion and accumulation of fictive particles, it is shown that isolated dunes present more deposition and less erosion than two-hill configurations. The results presented in this study will be discussed in the presence of Lagrangian transport of sand particles above 2D Gaussian hills in future work.  相似文献   
995.
Gravity currents descending along slopes have typically been studied in quiescent environments, despite the fact that in many geophysical settings there is significant externally driven motion. Here we investigate how the head of a gravity current is influenced by interfacial internal waves at the pycnocline of a two-layer ambient water column. Our experimental measurements show that larger amplitude internal waves, interacting with the gravity current, reduce both the mass transport by the gravity current and its thickness. These results suggest that the ambient internal wave field should be considered when estimating transport by gravity currents in geophysical settings with strong internal waves, such as lakes and the coastal ocean.  相似文献   
996.
We used an unmanned aircraft system (UAS) to lift and suspend distributed temperature sensing (DTS) technologies to observe the onset of an early morning transition from stable to unstably stratified atmospheric conditions. DTS employs a fiber optic cable interrogated by laser light, and uses the temperature dependent Raman scattering phenomenon and the speed of light to obtain a discrete spatial measurement of the temperature along the cable. The UAS/DTS combination yielded observations of temperature in the lower atmosphere with high resolution (1 s and 0.1 m) and extent (85 m) that revealed the detailed processes that occurred over a single morning transition. The experimental site was selected on the basis of previous experiments and long term data records; which indicate that diurnal boundary layer development and wind sectors are predictable and consistent. The data showed a complex interplay of motions that occur during the morning transition that resulted in propagation and growth of unstable wave modes. We observed a rapid cooling of the air aloft (layer above the strong vertical temperature gradient) layer directly after sunrise due to vertical mixing followed by an erosion of the strong gradient at the stable layer top. Midway through the transition, unstable wave modes were observed that are consistent with Kelvin–Helmholtz motions. These motions became amplified through the later stages of the transition.  相似文献   
997.
The interaction of North Brazil Current (NBC) rings with the Lesser Antilles Arc (LAA) and the Barbados Island (BI) is addressed by experimental modeling and observations. Our results compare well with previous experimental results and numerical simulations. Several sizes, intensities and two different vorticity profiles (non-isolated and initially isolated vortices) were tested. Three regimes were found namely: (1) the vortex surrounds the BI and its translational motion (TM) stops North of BI; (2) the vortex passes through the corridor between the LAA and the BI by reducing its size; and (3) The vortex stopped at the entrance to the corridor South of the BI. Isolated vortices were prone to stopped North of the BI. Apparently the intensity in the outer vorticity ring has an influence on the fate of the NBC ring. Non-isolated vortices can also stop its TM North of the BI because when in \(\beta\) plane they develop an outer ring similar to the isolated vortices. From these results we conclude that intense and big NBC rings are likely to stop its TM North of the BI. Medium and moderate vortices stops its TM South of the BI and they reduce their size until they are able to pass through the corridor between the LAA and the BI. Mild vortices of all sizes stop South of the corridor, close to the BI and the LAA. Drifter trajectories and Sea Surface Height altimetry confirm the results.  相似文献   
998.
Mixing in rivers is an important issue with many applications in water quality and water resource management. Mixing of effluents with ambient river water is especially important, particularly in river bends, where secondary circulation complicates the mixing process. By comparing measured trajectories from dye tests to velocimetry data measured with an acoustic Doppler velocimeter, this paper models the trajectory of a jet in an open channel bend using a modified formula for a jet trajectory in a straight crossflow. The original formula is shown to be insufficient for modeling the trajectory in the bend. Modifications are proposed using the position of the centre of the main secondary circulation cell to account for the bend effects. In the absence of secondary circulation, the modified formula reduces to the original formula. Once the secondary circulation has developed, the proposed formula is shown to have better residuals, lower root mean squared error, and higher \(R^2\) than the original formula.  相似文献   
999.
Cytostatic drugs are a troublesome class of emerging pollutants in water owing to their potential effects on DNA. Here we studied the removal of 5-fluorouracil from water using the electro-Fenton process. Galvanostatic electrolyses were performed with an undivided laboratory-scale cell equipped with a boron-doped diamond anode and a carbon felt cathode. Results show that the fastest degradation and almost complete mineralization was obtained at a Fe2+ catalyst concentration of 0.2 mM. The absolute rate constant for oxidation of 5-fluorouracil by hydroxyl radicals was 1.52 × 109 M?1 s?1. Oxalic and acetic acids were initially formed as main short-chain aliphatic by-products, then were completely degraded. After 6 h the final solution mainly contained inorganic ions (NH4 +, NO3 ? and F?) and less than 10% of residual organic carbon. Hence, electro-Fenton constitutes an interesting alternative to degrade biorefractory drugs.  相似文献   
1000.
Coenzyme Q10 is an antioxidant present in the human body. Coenzyme Q10 has an essential role in various biochemical reactions. The deficiency of coenzyme Q10 in the body leads to disorders including neurological degeneration, ageing and cancer. Clinical trials have tested coenzyme Q10 as a drug or a dietary supplement. However, the major pharmaceutical issue of coenzyme Q10 delivery is its high molecular weight and poor water solubility. This limitation leads to its poor oral bioavailability. Several methods have been designed to overcome the poor water solubility of coenzyme Q10, such as size reduction and ionization. This article presents nanotechnology-based drug delivery systems for coenzyme Q10 with special emphasis on pharmacokinetic perspectives and clinical relevance. Systems include nanoparticles, solid dispersions, liposomes, nanoemulsions, self-emulsifying drug delivery systems, nanostructured lipid carriers, cyclodextrins and nanocapsules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号